NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC PUTHANAMPATTI, TRICHY – 621007

DEPARTMENT OF MATHEMATICS

PG

COURSE OUTCOME (COS)

Name of the Course	Course Outcomes
	CO 1: Understand Solow's theorem and its applications
Algebra	and Galois theory and its applications
	CO 2: Apply suitable methods to find the
	roots of the polynomials
	CO 3: Analyze linear transformations.
	CO 4: Evaluate characteristic roots of the matrix
	CO1: Describe the concepts of sets and functions,
	metric spaces, continuity and connectedness.
Real Analysis- I	CO2: Demonstrate on sequences and series.
	CO3: Demonstrate on applying Baire Category
	Theorem, Banach Contraction Principle .
	CO4: Analyze Cauchy sequences, complete metric
	spaces and connected metric spaces.
Ordinary Differential Equations	CO1: Describe the methods of solving first and
	second order ODE and non linear autonomous
	system of ODE.
	CO2: Understand the special functions of
	Mathematical Physics and the concept of
	stability and critical points of linear system of
	equations.
	CO3: Evaluate the power series solution of ODE.
	CO4: Demonstrate on applying Picard's theorem to find
	the solution of ODE's.

***** ************ ✓

Integral Equation, Calculus of Variations and Fourier Transforms	 CO1: Solve the linear integral equations CO2: Find the solutions of Volterra and Fredholm integral equations. CO3: Demonstrate on variational problems on moving boundaries and fixed boundaries. CO4: Find the Fourier transform and Hankel transform of various functions.
Classical Dynamics	 CO 1: Understand the 3N-Coordinate system made up of N-Spatial coordinates, N-velocity coordinates and N-acceleration coordinates CO 2: Analyze the motion of mechanical systems with constraints using Lagranian description CO 3: Apply Hamilton's principle and gain proficiency in solving equations of motions CO 4: Use the Hamilton-Jacobi theory in solving equations of options
Linear Algebra	 CO 1: Apply the knowledge of bases and dimension of vector spaces and linear transformation. CO2: Understand the operations on matrices, matrix of linear transformation and properties of determinant. CO3: Evaluate the Eigen values and the Eigen vectors of linear transformations. CO4: Demonstrate on applying the Jordan canonical forms to vector paces.

A

Real Analysis- II	CO1: Know differentiation of single variables.
	CO2: Acquire the knowledge of Riemann-Stieltjes
	integrals and inverse function theorem
	CO3: Demonstrate on the convergence and uniform
	convergence of sequence and series of functions
	CO4: Evaluate directional derivative, total derivative,
	Jacobian of functions of several variables.
	CO1: Develop their abstract thinking skills
	CO2: Provide precise definitions and appropriate
	examples and counter examples of fundamental
Topology	concepts in general topology.
	CO3: Acquire knowledge about various types of
	topological spaces and their properties
	CO4: Appreciate the beauty of the mathematical results
	like Ury Zohn's Lemma and understand the
	dynamics of the proof techniques.
Partial Differential Equations	CO1: Recollect the first order and second order partial
	differential equations and their solution.
	CO2: Understand the linear partial differential equations with constant and variable coefficients, boundary value problems and application of calculus of variations.
	CO3: Gain good knowledge in applying Charpit's and Jacobi's methods, method of separation of variables and the method of integrals to obtain solutions of partial differential equations.
	CO4: Demonstrate on the canonical forms of second
	order PDEs and bounded value problems by
	Dirichlet and Neumann.

Complex Analysis	CO1: Acquire the knowledge of analytic functions and
	Mobius transformation.
	CO2: Understand the concept of complex integration.
	CO3: Demonstrate on Cauchy theorems and open
	mapping theorem.
	CO4: Classify the singularities and evaluate the residue
	CO1: Understand the concept of Graphs and Level sets-
	Vector fields
Differential	CO2: Analyze surfaces and Vector field on surfaces
Geometry	CO3: Understand Gauss map-Geodesics.
	CO4: Apply Parallel Transport and Weingarten map.
	CO 1: Acquire the concept of Lebesgue measure,
Measure	measurable set.
Theory and	CO 2: Understand the concept of integration of non
Integration	CO 3: Demonstrate on Jenson's inequality and Hahn
	decomposition theorem and Fubini's theorem.
	CO 4: Analyze the properties of L ^p spaces.
	CO1: Understand the concept of Normed Spaces
Functional Analysis	CO2: Apply the idea of linear operators and compact operators
	CO3: Evaluate Ortho normal basis
	CO4: Eemonstrate spectral theory
Stochastic Processes	CO1: Understand the concept of various specifications o
	Stochastic Processes.
	Processes to real life problems
	CO3: Demonstrate on renewal equation, stopping time
	and renewal theorem.
	CO4: Apply the idea of queuing model to real life
	problems

	congruence, greatest common divisor, least
	common multiple and factoring.
	CO2: Understand certain number theoretic functions
	and their properties.
Number	CO3: Apply the law of Quadratic Reciprocity and other
Theory	methods to classify numbers as primitive roots,
	quadratic residues and quadratic non- residue.
	CO4: Acquire the mathematical skills required to solve
	the system of Diophantine equation using Chinese
	Reminder theorem and Euclidean algorithm.
Fuzzy Mathematics	CO1: To know the basic Mathematical elements of the
	theory of fuzzy sets
	CO2: Gain Knowledge about the fuzzy arithmetic and
	fuzzy number
	CO3: To understand the difference and similarities
	between fuzzy sets and classical set theories.
	CO4: Apply the fuzzy logic in real life situation
Graph Theory	CO1: Understand the definitions namely, cut vertex.
	bridge, blocks and automorphism group of a graph
	CO2: Study the properties of trees and connectivity.
	CO3: Identify Eulerian graphs and Hamiltonian graphs.
	CO4: Understand the concepts planarity including Euler
	identity, matching's and colorings.

Numerical Analysis	CO1: Obtain the solutions of transcendental and
	polynomial equations.
	CO2 : Apply direct methods and iteration methods for
	solving system of equations.
	cO3 : Apply Hermit interpolation, piecewise and spine
	CO4 : Solve problems using interpolation and ordinary
	differential equations using numerical methods.
	CO1: Understand the concept of integer programming
	and dynamic programming.
Optimization	CO2: Analyze the problems based on decision theory and
Techniques	game theory.
	CO3: Get optimize inventory models.
	CO4: Evaluate non-linear programming problems.
	CO1: Acquire the knowledge of random variables,
	distribution.
	CO2: Understand the concept of expectation,
Probability	characteristics function.
Theory	CO3: Demonstrate on Chebyshev inequality and various
	distributions
	CO4: Apply limit theorems to analyze stochastic
	convergence.
Coding Theory	CO1: Apply linear block codes for error deduction and
	correction.
	CO2: Understand the importance in the design of codes.
	CO3: Apply the tools of linear algebra to construct
	special type of codes.
	CO4: Use algebraic techniques in designing coefficient
	and reliable data transmission methods.

	CO2: Understand the potential theorems of fluid flow
Fluid	CO3: Apply the concept of complex analysis in the
Dynamics	analysis of the flow of liquids.
	CO4: Analyze the concept of sources, sinks & doublets
	and two dimensional flows.
	CO 1: Acquire the role of discrete and continuous
	distributions in simulation
	CO 2: Understand the steady state behavior of queuing
Iathematical	models
Simulation	CO 3: Evaluate the performance measures of queuing
	system
	CO 4: Demonstrate on random number and variety
	generation
	CO 1: Represent data diagrammatically
Statistics	CO 2: Evaluate measures of dispersion
	CO 3: Apply correlation and regression analysis
	CO 4: Demonstrate on analysis of variance